A Pumilio-induced RNA structure switch in p27-3′ UTR controls miR-221 and miR-222 accessibility

Martijn Kedde1,4, Marieke van Kouwenhove1,4, Wilbert Zwart2, Joachim A. F. Oude Vrielink1, Ran Elkon1 and Reuven Agami1,3,5

Key regulators of 3′ untranslated regions (3′ UTRs) are microRNAs and RNA-binding proteins (RBPs)1–2. The p27 tumour suppressor is highly expressed in quiescent cells, and its downregulation is required for cell cycle entry after growth factor stimulation3,4. Intriguingly, p27 accumulates in quiescent cells despite high levels of its inhibitors miR-221 and miR-222 (refs 5, 6). Here we show that miR-221 and miR-222 are underactive towards p27-3′ UTR in quiescent cells, as a result of target site hindrance. Pumilio-1 (PUM1) is a ubiquitously expressed RBP that was shown to interact with p27-3′ UTR7,8. In response to growth factor stimulation, PUM1 is upregulated and phosphorylated for optimal induction of its RNA-binding activity towards the p27-3′ UTR. PUM1 binding induces a local change in RNA structure that favours association with miR-221 and miR-222, efficient suppression of p27 expression, and rapid entry to the cell cycle. We have therefore uncovered a novel RBP-induced structural switch modulating microRNA-mediated gene expression regulation.

MicroRNAs (miRNAs) are genes involved in normal development and in cancer, mainly by associating with 3′ untranslated regions (3′ UTRs) of messenger RNAs, regulating their expression9,10. In a similar manner to miRNAs, RBPs can interact with 3′ UTRs in a sequence-specific manner and can both stimulate and inhibit gene expression1–2. In particular, a member of the Caenorhabditis elegans Pumilio family (Puf-9) is required for 3′ UTR-mediated regulation of the let-7 target hbl-1 (ref. 11). By association with hundreds of miRNAs, many coding for cell cycle regulators, Pumilio RBPs potentially influence expression by an as yet unknown mechanism11. High levels of miR-221 and miR-222 are required in many different cancer types to inhibit the expression of p27 (CDKN1B; cyclin dependent kinase inhibitor 1b) and stimulate proliferation12,13. p27 is a cyclin-dependent kinase inhibitor that negatively regulates cell cycle progression by association with cyclin-dependent kinase 2 (CDK2) and cyclin E complexes, resulting in the inhibition of the transition from G1 to S phase14. Accumulation of p27 protein is required for entry into quiescence (G0), and, on stimulation with growth factor, p27 levels must decrease to allow proper S-phase entry14,15.

We asked whether the miR-221/miR-222 cluster is involved in p27 regulation in quiescence, because it is a negative regulator of p27 translation in many cancer cell types. We therefore examined p27 and miR-221/miR-222 levels in both quiescent and cycling BJ primary fibroblasts by RNase protection assays (RPAs), quantitative RT–PCR (qRT–PCR), and northern blot and expression array analyses. Although p27 protein level was clearly elevated in quiescent cells, p27 mRNA and miR-221/miR-222 levels remained constant (Fig. 1a, b; Supplementary Information, Fig. S1a–d). We next inhibited miR-221 and miR-222 function by using miR-221 and miR-222 antagonors (validated in ref. 5). Addition of miR-221 and miR-222 antagonors, but not a control antagonor, to cycling BJ cells resulted in an increase in p27 levels (Fig. 1c). In contrast, addition of miR-221 and miR-222 antagonors to quiescent BJ cells did not affect the level of p27 protein, suggesting that in quiescent cells miR-221 and miR-222 is less functional in suppressing its target, p27. Effective uptake of antagonors in quiescent cells was demonstrated by a control directed against p53 short hairpin RNAs (shRNAs), in BJ-p53kd cells (Supplementary Information, Fig. S1e). Indeed, despite similar p27 mRNA levels (Supplementary Information, Fig. S1f–i), p27 translation is increased in quiescent cells (Fig. 1d), indicating that the production of p27 protein is not inhibited in quiescent cells despite the presence of its mRNA inhibitor.

The activity of miRNAs can be dependent on accessibility to their target miRNAs16. To examine the association of miR-221 and miR-222 with p27-3′ UTR in quiescent and cycling cells, we immunoprecipitated endogenous Argonaute 2 (AGO2, the main component of the RNA-induced silencing complex (RISC), directing miRNA target inhibition17) and measured the relative amounts of associated p27 mRNA and miR-221/miR-222. As controls we used anti-CDK4 antibody for immunoprecipitation, and both glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and 18S ribosomal RNA for qRT–PCR. Although similar amounts of

1Division of Gene Regulation, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands. 2Division of Cell Biology II, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands. 3Centre for Biomedical Genetics UMCU, Stratenum 3.223, Universiteitsweg 100, 3584 CG Utrecht, The Netherlands. 4These authors contributed equally to this work. 5Correspondence should be addressed to R.A. (e-mail: r.agami@nki.nl)

Received 01 July 2010; accepted 12 August 2010; published online 05 September 2010; DOI:10.1038/ncb2105
Among many genes, interaction with miR-221 and miR-222. Immunoblot analysis was performed as in Supplementary Information, Fig. S2b. Error bars represent s.e.m. for triplicate reactions. Uncropped images of blots are shown in Supplementary Information, Fig. S10.

AGO2 were expressed and immunoprecipitated (Fig. 1e), less p27 mRNA was associated with AGO2–miR-221/miR-222 in quiescent cells than in cycling cells (Fig. 1e; Supplementary Information, Fig. S2a, b). Previous formaldehyde crosslinking yielded similar results (Supplementary Information, Fig. S2c). Analysis of a control miRNA (miR-29a) and its target mRNA in cycling cells is more accessible for AGO2–miR-221/miR-222 in quiescent cells than in cycling BJs was set to 1. Enrichment factors of miR-221 and p27 mRNA in AGO2 immunoprecipitants over CDK4 immunoprecipitants are shown in Supplementary Information, Fig. S2b. Error bars represent s.e.m. for triplicate reactions. Uncropped images of blots are shown in Supplementary Information, Fig. S10.

AGO2 and miR-221/miR-222 are underactive towards p27 in quiescent cells. The p27-3′ UTR harbours two functional PUM1 knockdown constructs (Fig. 2b). These data suggest that PUM1 inhibits p27 expression in HEK293 cells.

Because both PUM1 and miR-221/miR-222 inhibit p27 expression, we measured the effect of PUM1 on miR-221-induced repression of a luciferase reporter gene coupled to the 3′ UTR of p27 in MCF7 cells, which endogenously express PUM1 but not miR-221 and miR-222 (ref. 13). As expected, co-transfection of miR-221 resulted in decreased luciferase activity (Fig. 2c). On knockdown of PUM1 (Supplementary Information, Fig. S3a), miR-221 function was compromised. No effect of PUM1 knockdown on the reporter was seen in the absence of miR-221 (Fig. 2c). In addition, inactivating mutations in the miR-221 and miR-222 target sites also resulted in a loss of the PUM1 knockdown effect (Supplementary Information, Fig. S3b). Moreover, mutating the PREs in p27-3′ UTR also compromised the PUM1 knockdown effect, whereas miR-221 function remained intact (Fig. 2d). The fact that PUM1 knockdown abolished miR-221 function, but loss of its binding sites on the p27-3′ UTR did not, suggests that PUM1-induced changes
Conservation analysis of p27-3ʹ UTR for PUM1 and actin control. Error bars represent s.d. with shRNA constructs targeting PUM1 and control. Cells were subjected to sequence 5ʹ of the binding sites for miR-221 and miR-222 and the PREs (consensus sequence 5ʹ-UGUANAUA-3ʹ) are marked. (b) HEK293 cells were transfected with shRNA constructs targeting PUM1 and control. Cells were subjected to quantitative RT–PCR for PUM1 and actin control. Error bars represent s.d. for triplicate reactions. Right: immunoblot analysis as in Fig. 1a. KD, knock-down. (c) MCF7 cells were co-transfected with expression vectors coding for PUM1 and AGO2 to co-localize to granules in both quiescent and cycling cells, although no direct interaction between the two could be shown as reported previously. Similar localization was observed with endogenous PUM1 and AGO2 to co-localize to granules in both quiescent and cycling BJ fibroblasts and revealed by fluorescent confocal microscopy. GFP–PUM1 showed a granular localization pattern, of non-specific adhesion of Cy3-RNA oligonucleotides to chromatin, a partial nuclear localization was observed. GFP–PUM1 and Cy3-tagged wild-type RNA (Cy3-wt-RNA) showed strong co-localization in the cytosol of cycling cells (Fig. 3a, middle panel; Supplementary Information, Fig. S4b). When GFP–PUM1 and Cy3-wt-RNA were injected together into quiescent BJ cells (Fig. 3a, top panel), or when an RNA oligonucleotide with two nucleotide alterations in the PRE was injected with GFP–PUM1 into cycling cells, no co-localization was observed (Fig. 3a, bottom panel). PUM1 co-localization with Cy3-wt-RNA was specific, because it was not observed with several other RBPs (Supplementary Information, Fig. S4d, e). Direct and specific binding of PUM1 to wild-type, but not mutant, RNA is shown in immunoprecipitation-binding assays with radioactively labelled probes and PUM1–TAP (tandem affinity purification; Fig. 3b). These results indicate that the RNA binding of PUM1 is specific and its RNA-binding capacity, at least towards the p27-3ʹ UTR, is low in quiescent cells and high in cycling cells.

We also confirmed this conclusion by immunoprecipitations coupled to RPA of endogenous PUM1 in quiescent and cycling BJ cells. Immunoprecipitation with anti-PUM1 antibody, but not an anti-CDK6 control, from cycling BJ cells confirmed binding of PUM1 to p27 mRNA (Fig. 3c; quantification is shown in Supplementary Information, Fig. S4f). The cyclophilin RNA-negative control was not enriched in...
RNA-protein interaction

The immunoprecipitations, indicating the specificity of PUM1 binding. In contrast, in quiescent BJ cells no p27 mRNA was detected in PUM1 immunoprecipitation. Immunoblot analysis revealed higher levels of endogenous PUM1 in cycling BJ cells than in quiescent cells (Fig. 3c). This effect was observed with both endogenous and stable exogenous tagged PUM1 (Fig. 3d), indicating post-translational modifications. Taken together, our observations show that, on cell cycle entry from quiescence, PUM1 levels increase and its RNA-binding activity is turned on.

A study of phosphorylated proteins in HeLa cells reported unchanged phosphorylation of PUM1 Ser 209 on stimulation with epidermal growth factor, whereas Ser 714 phosphorylation was rapidly increased up to about fivefold (Fig. 3e). To examine whether these phosphorylation sites affect the RNA-binding activity of PUM1 in cycling cells, GFP–PUM1 phospho-mutants (Supplementary Information, Fig. S4a) were microinjected together with the Cy3-RNA oligonucleotides into cycling BJ cells. Mutation of Ser 714 to alanine (S714A) decreased the RNA-binding activity of PUM1 for Cy3-wt-RNA in cycling cells (Fig. 3f, lower panel), whereas the S209A mutant was as active as wild-type PUM1 (Fig. 3f, upper panel). Furthermore, a phospho-mimic mutation of Ser 714 to glutamic acid (S714E) showed persistent RNA-binding activity in quiescent cells (Fig. 3g).

A study of phosphorylated proteins in HeLa cells reported unchanged phosphorylation of PUM1 Ser 209 on stimulation with epidermal growth factor, whereas Ser 714 phosphorylation was rapidly increased up to about fivefold (Fig. 3e). To examine whether these phosphorylation sites affect the RNA-binding activity of PUM1 in cycling cells, GFP–PUM1 phospho-mutants (Supplementary Information, Fig. S4a) were microinjected together with the Cy3-RNA oligonucleotides into cycling BJ cells. Mutation of Ser 714 to alanine (S714A) decreased the RNA-binding activity of PUM1 for Cy3-wt-RNA in cycling cells (Fig. 3f, lower panel), whereas the S209A mutant was as active as wild-type PUM1 (Fig. 3f, upper panel). Furthermore, a phospho-mimic mutation of Ser 714 to glutamic acid (S714E) showed persistent RNA-binding activity in quiescent cells (Fig. 3g).

Next we examined the effect of Pumilio on endogenous p27 expression and cell cycle re-entry from quiescence. PUM1 knockdown resulted in a delayed re-entry into the cell cycle from quiescence (Supplementary Information, Fig. S5a) despite modest differences in p27 levels (see below); this can be explained by haploinsufficiency of p27 (ref. 20). We noticed that the levels of PUM2, a homologue of PUM1 that is also expressed in BJ and HEK293 cells, increased when PUM1 was suppressed by RNA-mediated
Pumilio regulates p27-dependent cell cycle re-entry from quiescence.

(a) HEK293 cells were transiently transfected with PUM1 siRNA, PUM2 siRNA and scrambled control siRNA, and immunoblot analysis was performed with antibodies against PUM1, PUM2 and p27, with anti-tubulin as control. (b) HEK293 cells transfected with PUM1- and PUM2-siRNA, or control, were treated with the proteasome inhibitor MG-132. A densitometric analysis at the indicated time points is shown below. Immunoblot analysis was performed as in a. (c) HEK293 cells were transfected with siRNA vectors against p27 or control, and with either PUM1- and PUM2-siRNA or control siRNA. After 3 days the cell densities were revealed by staining with Coomassie blue.

Figure 4 Pumilio regulates p27-dependent cell cycle re-entry from quiescence.

(a) HEK293 cells were transiently transfected with PUM1 siRNA, PUM2 siRNA and scrambled control siRNA, and immunoblot analysis was performed with antibodies against PUM1, PUM2 and p27, with anti-tubulin as control. (b) HEK293 cells transfected with PUM1- and PUM2-siRNA, or control, were treated with the proteasome inhibitor MG-132. A densitometric analysis at the indicated time points is shown below. Immunoblot analysis was performed as in a. (c) HEK293 cells were transfected with siRNA vectors against p27 or control, and with either PUM1- and PUM2-siRNA or control siRNA. After 3 days the cell densities were revealed by staining with Coomassie blue.

interference (Fig. 4a and data not shown). The presence of two PREs in the 3′ UTR of PUM2 could explain this. Suppression of PUM2, like that of PUM1, led to an increase in p27 levels and a comparable delay in cell cycle re-entry, suggesting a redundant activity with PUM1 (Supplementary Information, Fig. S5b). Knockdown of both PUM1 and PUM2 significantly increased p27 protein levels by elevating translation (Fig. 4b) and halted proliferation (Fig. 4c). Knockdown of PUM1 and PUM2 in BJ cells caused a delayed entry into S phase on stimulation with growth factor, whereas BJ cells containing a stable p27 knockdown were insensitive to the loss of PUM1 and PUM2 (Fig. 4d; Supplementary Information, Fig. S5c). These results indicate that Pumilio proteins control cell cycle re-entry in response to growth factors, and that this function is in part mediated by controlling p27 expression.

Using the secondary structure prediction RNAfold software (Vienna RNA package version 1.8.3)©, we noticed that the PRE and the miR-221 and miR-222 target site could form a stem-loop structure with considerable base-pair probability (Fig. 5a; Supplementary Information, Fig. S5b). We therefore speculated that PUM1-binding to the PRE favours opening of the stem-loop structure, allowing miR-221 and miR-222 to gain access to the p27-3′ UTR in cycling cells. To study changes in RNA secondary structure in vivo, we tagged RNA oligonucleotides containing the p27-3′ UTR PRE and the proximal miR-221/miR-222-binding site, with both 3′ (fluorescein) and 5′ (Cy3) fluorophores. On microinjection of this RNA, the fluorescein lifetime in cycling BJ cells was significantly longer than in quiescent cells, as a result of decreased energy transfer (FRET; fluorescence resonance energy transfer) to the Cy3 fluorophore (Fig. 5b). This suggests an increased distance between the two fluorophores and thus a more open conformation of the stem-loop structure in cycling cells. To examine the potential differences in donor-fluorophore lifetime and to test the specificity of this assay, we microinjected mutant RNAs with strong and weak predicted secondary structures (Fig. 5b; Supplementary Information, Fig. S5c). A PRE mutant RNA that was energetically more stable than the wild-type RNA (strong mutant) showed a short fluorescein lifetime in both quiescent and cycling cells, suggesting an unchanged, closed, RNA conformation. In contrast, an energetically weak structured RNA mutated in the miRNA site (weak mutant) maintained a longer fluorescein lifetime in both quiescent and cycling cells, suggesting an open conformation in both conditions. Because the changes in FRET observed with the wild-type RNA were within the range indicated by the mutant RNAs, our results imply that the measured changes in FRET represent actual structural differences. We also tested changes in luciferase–p27-3′ UTR reporter activity on mutation of either PUM binding site with strong or weak complementarity to the miRNA sites. Whereas the weak mutant of both PUM sites permitted
miRNA-mediated repression, altering either or both of the PUM sites to strong mutants abrogated miRNA activity (Supplementary Information, Fig. S8). These results suggest a functional interaction between Pumilio and miR-221/miR-222 through their binding sites on the p27-3′ UTR and indicate that both Pumilio sites in p27-3′ UTR may contribute to the miRNA inhibitory structure in vivo.

On PUM1 knockdown in quiescent BJ cells, donor lifetime was not affected when compared with transfection of control siRNAs, which is consistent with an inactive state of PUM1 (Fig. 5c). In contrast, knockdown of PUM1 in cycling cells abolished the increase in donor lifetime, suggesting that the changes in conformation observed with the wild-type oligonucleotide are dependent on PUM1 protein. These results are supported by in vivo crosslinking of BJ cells and RT–PCR with a primer designed to detect the structured RNA loop specifically. A PCR product indicating a closed p27-3′ UTR conformation was observed in quiescent cells and in PUM1 and PUM2 knockdown cells but not in cycling cells (Fig. 5d; Supplementary Information, Fig. S9).

Taken together, our results provide evidence in support of a model in which, on stimulation by growth factors, Pumilio levels are increased and RNA-binding activity is further enhanced by phosphorylation inducing a conformational change in the p27-3′ UTR (Fig. 5e). These changes permit a more efficient binding of miR-221 and miR-222 specifically to their target sites on the p27-3′ UTR and tuning of cell cycle progression by repressing p27 expression. In addition, miRNA upregulation in

Figure 5 Pumilio binding alters local p27-3′ UTR structure and miR-221 and miR-222 accessibility. (a) Schematic representation of the conformation of a region of the p27-3′ UTR containing a PRE and a miR-221/miR-222 site as predicted by RNAfold software. Base-pair probability is indicated in the key. (b) Quiescent (Q) and cycling (C) BJ cells were microinjected with short RNAs containing the p27-3′ UTR-PRE and the proximal miR-221/miR-222-binding site, and tagged with both 3′ (fluorescein) and 5′ (Cy3) fluorophores. The amount of conformational free energy (ΔG in kcal mol⁻¹) is listed for the wild-type (WT) and the two mutant short RNAs (named accordingly ‘strong’ and ‘weak’). Differences in Cy3 fluorophore lifetime (in ns) due to FRET are shown, and P values are calculated for the differences in lifetime. Error bars represent s.d.

(c) BJ cells were transfected with PUM1 siRNA and control siRNA and microinjected with the wild-type short RNA as in b. Error bars represent s.d.

(d) Model representing part of the p27-3′ UTR, indicating the sequences recognized by the bridge primer used for RT and PCR. Ethidium-bromide-stained gels of PCRs performed on bridge or GAPDH reverse primer-primed cDNA from crosslinked or crosslink-reversed RNA isolated from quiescent (Q), cycling (C) and cycling PUM1 and PUM2 knockdown (KD) BJ cells. (e) Model proposing a role for Pumilio RBPs in mammalian somatic cells. See the text for details. Uncropped images of blots are shown in Supplementary Information, Fig. S10.
response to growth factors has been reported in cancer cells, resulting in global target downregulation, implying distinct modes of regulation to achieve target specificity\(^2\). Our results reveal a highly conserved, specific case of complementarity of an RBP target motif to a miRNA-binding site. To our knowledge, this is the only demonstration of an RBP that modulates miRNA activity by inducing a local structural switch in mRNA. Considering the generally high conservation of some 3′ UTR regions, we expect that other RBPs may be found to modulate miRNA regulation of other genes in a similar manner.

METHODS

Methods and any associated references are available in the online version of the paper at http://www.nature.com/naturecellbiology/

ACKNOWLEDGEMENTS

We thank all members of the Agami laboratory for technical help and discussions. We also thank André Gerber for constructs, Kees Jalink for advice on fluorescence lifetime imaging microscopy measurements, and R. B. Israel for assistance with statistical analysis. This work was supported by the EU/RI (European research young investigator award), ERC (European Research Council), KWF (koningin wilhelmina fonds; Dutch cancer foundation) and Horizon-NWO (Nederlandse Organisatie voor Wetenschappelijk Onderzoek; R.A.) and an EMBO long-term fellowship (R.E.).

AUTHOR CONTRIBUTIONS

M.K. and M.v.K. performed most of the experimental work. R.A. supervised the project. W.Z. performed fluorescence lifetime imaging microscopy and confocal laser scanning microscopy analyses. J.O.V. provided technical assistance. R.E. performed bioinformatical analyses. M.K., M.v.K. and R.A. wrote the manuscript.

COMPETING FINANCIAL INTERESTS

The authors declare no competing financial interests.

Published online at http://www.nature.com/naturecellbiology

Note: Supplementary Information is available on the Nature Cell Biology website.
METHODS

Methods

Constructs and antibodies. MiR-Vec constructs and the pGL3-p27-3’ UTR and miR mutants were described previously23,25. The PREs in the p27-3’ UTR were mutated (weak) to the following sequences using the Stratagene multisite-directed mutagenesis kit: PRE1, 5’-tgatata-3’ to 5’-ggtagta-3’; PRE2, 5’-tgcata-3’ to 5’-gcatca-3’ (strong mutants are shown below). Constructs for RPA detection of hTR, cyclophilin, p27 and miR-221 were described previously25; the RPA probe sequence for miR-125b was 5’-CUGAGCUCCGAGCCCUAUUCUUGAAGUUU-3’. Probes were prepared in accordance with the manufacturer’s instructions (Ambion mirVana probe construction kit). siRNA for p27 was described previously25; the shPUM1.1 sequence was 5’-AATCCACGCTGACTTGAAGCA-3’, the shPUM1.3 sequence was 5’-AACAGACCCACCCAAGGCTCT-3’, the shPUM1.4 sequence was 5’-AATTTGCAATATCCAAGACAC-3’. These were cloned into pRETO-SUPER. siRNAs ordered from Ambion were against PUM1 (no. 138317), PUM2 (no. 138319) and a scrambled control (5’-CGUGAGCGUUAAGCGCGUUGUG-3’) from Invitrogen. The PUM1–TAP construct was a gift from A. Gerber. The GFP–PUM1(HD) and GFP–RBP constructs were made by cloning the cDNA into the Clontech eGFP vector; mutants were made with the Stratagene multisite-directed mutagenesis kit. All constructs were sequence-verified.

The Cy3-wt-RNA oligonucleotide (5’-ACUUCCGGUGUAAUGUAAU-UUU-3’) and the Cy3-mt-RNA oligonucleotide (5’-ACUUCCGUCUCAUGUAAU-UUU-UUU-3’) were labelled 3’ (Dharmacon). Labelled RNA oligonucleotides (3’ (fluorescein) and 5’ (Cy3)) used for FLIM were wild-type (5’-UGUGUGUAUUAGUUAAACUAAUUGAGCAAC-3’), strong mutant (5’-UGUGUGUAUUAGUUAAACUAAUUGAGCAAC-3’) and weak mutant (5’-UGUGUGUAUUAGUUAAACUAAUUGAGCAAC-3’). Dharmacon.

Antibodies were used: GO2 (Transduction Labs and Abcam), actin (Abcam), pSer273 (Transduction Labs), CDC2 (C22), p53 (DO1) and CDK6 (Santa Cruz), PUM1 and PUM2 (Bethyl Labs), tubulin (YL1/2 ECACC), rabbit GFP and bromodoxyuridine (Dako).

Cell culture, transfections, dual luciferase activity analysis and cell cycle profile analysis. HEK293, MCF7 and BJ primary fibroblast cells were cultured in DMEM supplemented with 10% heat-inactivated fetal calf serum (FCS) in 5% CO2 at 37 °C. HEK293 cells were transiently transfected by using calcium phosphate precipitation. MCF7 cells were transfected with Fugene (Roche) for luciferase analysis with 10 ng of reporter, 5 ng of Renilla control plasmid, 250 ng of either miR-Vec or miR-Vec control, and 250 ng of knockdown construct for PUM1 or control. Dual luciferase activity assays were performed 72 h after transfection in accordance with the manufacturer’s instructions (Promega). BJ cells were transfected with siRNAs in a final concentration of 50 nM with the use of Dharmafect reagent (Dharmacon), in accordance with the manufacturer’s instructions. To obtain quiescent BJ cells, cells were cultured for 72 h in DMEM containing 0.25% FCS. To separate sequences (as described above) and applied to the cells overnight at a final concentration of 15 µM. The probe was incubated with RNA labelled 3’ with fluorescein and 5’ with Cy3. Subsequently, cells were stained with 0.5% DAPI. After fixation with 3.7% formaldehyde in PBS, cells were mounted in Vectashield mounting medium (Vector Laboratories). The specimens were imaged with a Leica TCS SP2 System equipped with a 63× oil-immersion objective. Endogenous stainings for PUM1 and AGO2 were performed with the manufacturer’s instructions. Scatter plots for co-localization analysis were generated with ImageJ WCIF software (http://www.uhnresearch.ca/wcif).

Fluorescence lifetime imaging microscopy (FLIM). Before FLIM experiments, cells were grown on coverslips and microinjected with RNA labelled 3’ with fluorescein and 5’ with Cy3. Subsequently, cells were mounted in bicarbonate-buffered saline (140 mM NaCl, 5 mM KCl, 1 mM MgCl2, 1 mM CaCl2, 23 mM NaHCO3, 10 mM glucose, 10 mM HEPES at pH 7.3) in a heated tissue-culture chamber at 37 °C under 5% CO2. FLIM experiments were performed on a Leica inverted DM-IRE2 microscope equipped with a Lambda Instruments frequency domain lifetime attachment (Leutengwold), controlled by the vendor’s FLIM software. Fluorescein was excited with about 4 mW of light at 490–550 nm with an intensified charge-coupled-device camera (CoolSNAP HQ; Roper Scientific). To calculate the fluorescence lifetime, the intensities from 12 phase-shifted images (modulation depth about 70%) were fitted with a sinus function, and lifetimes were derived from the phase shift between excitation and emission. Differences in lifetimes were assigned P values with Student’s t-test.

Immunoprecipitation, immunoblotting, NASenase protection assays and qRT-PCR analysis. PUM1 and AGO2 were immunoprecipitated from BJ cell extracts with GammaBind G Sepharose (GE Healthcare). Beads were washed and incubated for 20 min with 8 µL of antibody solution (weak-type and mutant, described above) at 30 °C. Beads were washed, and bound RNA and proteins were revealed on gel.

For immunoblot analysis, extracts were prepared on 10% SDS–PAGE gels, and transferred to Immobilon-P membranes (Millipore). Western blots were developed with Supersignal (Pierce) or enhanced chemiluminescence (ECL; Amersham Biosciences) and exposed to film (Kodak). Denstometric analysis was performed with AIDA software (Raytest).

RPAs for p27 and cyclophilin were performed with the HybSpeed RPA and MAXIscript kits (Ambion) as described21. For miRNAs, we used mirVana kits (Ambion) in accordance with the manufacturer’s instructions10. Northern analysis was performed with standard protocols and RPA probe for p27.

For mRNA qRT–PCR, cDNA (from 3 µg RNA) was synthesized with SuperScript III and primed with oligo(dT) in accordance with the manufacturer’s instructions (Invitrogen). For combined miRNA and mRNA qRT–PCR, about 100 ng of input RNA and 20% of immunoprecipitated RNA was used for cDNA synthesis with random primers from a Taqman High Capacity cDNA kit (Applied Biosystems), in accordance with the manufacturer’s instructions. Primers for qPCR were PUM1 (5’-AAAAACTGAGATTTGAATGTTT-3’ (forward) and 5’-GCAAGCCAAAAGCAGGTTG-3’ (reverse)) and COL3A1 (5’-AACACCGAGGCTGTGAACAT-3’ (forward) and 5’-GCCAAGCTCCACACAAATTT-3’ (reverse)); p27, GAPDH and β-actin primers were described21. qPCR primers for miR-221, miR-222, miR-29a, GAPDH and 18S were from Applied Biosystems. Analysis was performed with SYBR Green PCR master mix or TaqMan master mix (Applied Biosystems) and Chromo 4 system (Bio-Rad Laboratories).

Crosslink bridge RT–PCRs were performed with bridge reverse primers (5’-CTTCTCCCAGAGTTATGAG-3’ and GAPDH reverse primer; PCR forward primer was S’-TATAAGCCTGAAAAAACACAAG-3’). BJ cells were crosslinked for 15 min with 1% formaldehyde (Sigma), inactivated with 330 mM glycine (Sigma), sonicated and cleared. Cleared lysate was treated for 1 h with proteinase K (Invitrogen) at 37 °C and inactivated with phenylmethylsulphonyl fluoride (Sigma). RNA was extracted, and reverse crosslinking was performed in 1 h at 70 °C.

Nature cell biology

© 2010 Macmillan Publishers Limited. All rights reserved.
Figure S1 MiR-221/222 and p27 levels in quiescent (Q) versus cycling (C) cells. (a) MiR-221 and miR-222 expression analysis on the Exiqon v2 microRNA microarray platform. M represents fold change (log2) as detected in quiescent versus cycling BJ cells. Hybridization was performed using a standard protocol (http://microarrays.nki.nl). (b) Northern blot for p27 mRNA and ethidium bromide staining for 18S ribosomal RNA in quiescent versus cycling BJ cells. Densitometric analysis resulted in the normalized amounts displayed below. (c) The amount of p27 mRNA was measured by qRT-PCR in cycling and quiescent BJ cells. Error bars represent SD from triplicate reactions. (d) Expression analysis of p27 on the Illumina Sentrix BeadChip v3 microarray platform. Absolute expression values were obtained with two probes in quiescent versus cycling BJ cells. The data is a representative of a duplo experiment. Hybridization was performed using a standard protocol (http://microarrays.nki.nl). (e) An antago-p53kd was administered to quiescent and cycling BJ-p53kd cells and immunoblot analysis on BJ-p53kd and control cells was performed with p53 and actin control antibodies.
Figure S2a

AGO2-miRNA IP:

Relative p27 mRNA/miR-222

Q C

Figure S2b

Enrichment in AGO2 IP/CDK4 IP

<table>
<thead>
<tr>
<th></th>
<th>C</th>
<th>+/-</th>
</tr>
</thead>
<tbody>
<tr>
<td>p27</td>
<td>4.9</td>
<td>2.1</td>
</tr>
<tr>
<td>miR-221</td>
<td>8.3</td>
<td>0.9</td>
</tr>
<tr>
<td>miR-222</td>
<td>3.7</td>
<td>0.5</td>
</tr>
<tr>
<td>gapdh</td>
<td>1.4</td>
<td>0.1</td>
</tr>
<tr>
<td>gapdh</td>
<td>1.2</td>
<td>0.4</td>
</tr>
</tbody>
</table>

Figure S2c

Crosslinked AGO2-miRNA IP:

Relative p27 mRNA/miR-221

Q C

Figure S2d

AGO2-miRNA IP:

Relative COL3A1 mRNA/miR-29a

Q C

<table>
<thead>
<tr>
<th></th>
<th>C</th>
<th>+/-</th>
</tr>
</thead>
<tbody>
<tr>
<td>p27</td>
<td>4.7</td>
<td>1.3</td>
</tr>
<tr>
<td>miR-221</td>
<td>5.0</td>
<td>0.7</td>
</tr>
<tr>
<td>gapdh</td>
<td>1.0</td>
<td>0.2</td>
</tr>
</tbody>
</table>

Figure S2 Relative amounts of miRNAs and associated mRNAs in AGO2 IPs. (a) The amounts of miR-222 and p27 mRNA were measured by qRT-PCR in the IPs shown in Fig. 1e. Results are presented as relative p27/miR-222 ratio. The ratio in the IPs from cycling BJ cells was set to 1. Error bars represent SEM from triplicate reactions. (b) Enrichment factors and SEM of miR-221, miR-222, p27 and gapdh control mRNA in AGO2 IPs over CDK4 IPs. (c) qRT-PCR performed as in a, for miR-221 and p27 mRNA in AGO2 IPs from formaldehyde crosslinked BJ cells. Enrichment factors and SEM of miR-221, p27 and gapdh control mRNA in AGO2 IPs over CDK4 IPs are shown in the table. (d) qRT-PCR performed as in a for miR-29a and COL3A1 mRNA.
Figure S3 Effect of PUM1 knockdown on miR-221 mediated regulation towards the p27-3'UTR. (a) MCF7 cells were transfected with shRNA vectors against PUM1 or control and selected, immunoblot analysis was performed with PUM1 and tubulin control antibodies. (b) Luciferase assay performed as in Fig. 2c, with a luciferase construct coupled to the p27-3'UTR mutated for the miR-221/222 sites. Error bars represent SD from three independent experiments.
Figure S4 Localization and expression level analysis of PUM1 and control RBPs. (a) Confirmation of expression levels of GFP-PUM1 constructs by immunoblot for GFP and tubulin. (b) Zoom-in of the inset in merge panel and scatterplots in Fig. 3a,f,g. (c) Immunostaining for endogenous PUM1 and AGO2 in quiescent and cycling BJ cells. Colocalisation analyses within the same cell were performed through a scatter plot. Inset shows zoom-in on the highlighted area. Scalebar represents 10 μm. Representative pictures are shown. (d) Cycling BJ cells were microinjected with GFP-RBP control constructs and a Cy3-labeled RNA as in Fig. 3a. Representative pictures are shown. (e) Confirmation of expression levels of GFP-PUM1HD and GFP-RBP constructs by immunoblot for GFP and tubulin. (f) Quantification of RPA signals as shown in Fig. 3c, quantifications were performed with Phosphoimager software. (g) Quiescent or cycling BJ cells were microinjected with the GFP-PUM1HD construct and a Cy3-labeled RNA as in Fig. 3a. Representative pictures are shown.
Figure S4 continued

Figure S4d

- GFP-ELAV
- GFP-DAZ
- GFP-ACF
- GFP-hNRPR

Figure S4e

- GFP
- RNA-Cy3
- tubulin

Figure S4f

- RPA
- RPA/total
- Probe
- p27
- cyclophilin
- IP/total
- p27/cyclophilin
- 0.03 <0.01 0.19
- <0.01 <0.01 <0.01

Figure S4g

- quiescent
- cycling

Figure S4 continued
Figure S5a

0.0 0.4 0.8 1.2 1.6
0 2 4 6 8 10 12 14
G1-phase S-phase 16 hours stimulation
ctrl kd1 kd3 kd4

Relative % G1 or S-phase

<table>
<thead>
<tr>
<th></th>
<th>%</th>
<th>Ctrl</th>
<th>PUM1 kd1</th>
<th>PUM1 kd3</th>
<th>PUM1 kd4</th>
</tr>
</thead>
<tbody>
<tr>
<td>G1</td>
<td>62.0</td>
<td>71.9</td>
<td>65.0</td>
<td>77.2</td>
<td></td>
</tr>
<tr>
<td>S</td>
<td>33.9</td>
<td>24.4</td>
<td>29.4</td>
<td>23.4</td>
<td></td>
</tr>
<tr>
<td>G2/M</td>
<td>2.9</td>
<td>3.0</td>
<td>3.6</td>
<td>2.7</td>
<td></td>
</tr>
</tbody>
</table>

Figure S5b

18 hours stimulation

<table>
<thead>
<tr>
<th></th>
<th>%</th>
<th>Ctrl</th>
<th>PUM1 kd</th>
<th>PUM2 kd</th>
<th>PUM1,2 kd</th>
</tr>
</thead>
<tbody>
<tr>
<td>G1</td>
<td>73.1</td>
<td>74.2</td>
<td>76.2</td>
<td>79.5</td>
<td></td>
</tr>
<tr>
<td>S</td>
<td>11.9</td>
<td>9.6</td>
<td>9.9</td>
<td>5.4</td>
<td></td>
</tr>
<tr>
<td>G2/M</td>
<td>14.8</td>
<td>16.0</td>
<td>13.4</td>
<td>14.4</td>
<td></td>
</tr>
</tbody>
</table>

Figure S5c

<table>
<thead>
<tr>
<th></th>
<th>%</th>
<th>Ctrl</th>
<th>PUM1,2 kd</th>
</tr>
</thead>
<tbody>
<tr>
<td>G1</td>
<td>84.5</td>
<td>85.1</td>
<td></td>
</tr>
<tr>
<td>S</td>
<td>6.5</td>
<td>3.0</td>
<td></td>
</tr>
<tr>
<td>G2/M</td>
<td>8.4</td>
<td>11.3</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>%</th>
<th>Ctrl</th>
<th>PUM1,2 kd</th>
</tr>
</thead>
<tbody>
<tr>
<td>G1</td>
<td>86.1</td>
<td>85.3</td>
<td></td>
</tr>
<tr>
<td>S</td>
<td>7.7</td>
<td>7.1</td>
<td></td>
</tr>
<tr>
<td>G2/M</td>
<td>5.8</td>
<td>7.2</td>
<td></td>
</tr>
</tbody>
</table>

Figure S5 Loss of Pumilio affects cell cycle progression. (a) BJ cells containing stable PUM1 knockdowns or control were growth factor deprived and then stimulated for 16 hours with growth factors. The percentage of cells in S-phase was determined by flow cytometric analysis of BrdU incorporation. G1- and G2/M-phase percentages as measured by propidium iodine are shown below. Error bars represent the SD of triplicate experiments. (b) BJ cells were transfected with either siPUM1, siPUM2, both, or control siRNA, and growth factor deprived for 72 hours. After 18 hours of subsequent growth factor stimulation, the percentage of cells in S-phase was determined by flow cytometric analysis of BrdU incorporation. G1- and G2/M-phase percentages as measured by propidium iodine are shown below. Error bars represent the SD of triplicate experiments. Immunoblot analysis of quiescent BJ cells stimulated with growth factors for PUM1&2 and tubulin control. (c) G1- and G2/M-phase percentages as measured by propidium iodine from Fig. 4d.
Figure S6 Predicted conformation of the complete p27-3'UTR. A schematic representation of the conformation of the complete p27-3'UTR as predicted by RNAfold software. Base pair probability is indicated in the legend.
Figure S7 Conformation of tagged RNA oligos and single labelled FLIM control. (a) Gel migration analysis of RNA oligos containing wildtype, strong and weak mutant p27-3’UTR-PRE and the proximal miR-221/222 binding site. (b) Quiescent (Q) and cycling (C) BJ cells were microinjected with short RNAs containing the p27-3’UTR-PRE and the proximal miR-221/222 binding site, and tagged with 3’ (fluorescein) fluorophore. The wildtype, weak and strong mutants described in the text were used. Cy3 fluorophore lifetimes (in ns) due to FRET are displayed. Error bars represent SD.
Figure S8 Functional interaction between Pumilio and miRNA sites in the p27-3’UTR. Luciferase assay performed as in Fig. 2c, in HEK293 cells (endogenously expressing miR-221/222), with luciferase constructs coupled to the p27-3’UTR mutated for the miR-221/222 sites (miR DM), and several constructs mutated for both Pumilio sites (see schematic representation below). Pumilio sites 1 and 2 are shown in green, miRNA-221/222 sites are shown in red, weak and strong PUM site mutants are as described in the text. Error bars represent SD from three independent experiments.
Figure S9a

Schematic representation of the bridge PCR product (yourseq) adapted from BLAT search function with nucleotide numbers shown. Sequence is shown below, as expected the miR-221/222 site (red) and the Pumilio site (green) are missing from the PCR product.

Figure S9b

Immunoblots showing levels of PUM1 & 2 and control tubulin from crosslinked BJ cells from Fig. 5d.

Figure S9 In vivo crosslinking reveals predicted secondary p27-3’UTR structure. (a) Schematic representation of the bridge PCR product (yourseq) adapted from BLAT search function with nucleotide numbers shown. Sequence is shown below, as expected the miR-221/222 site (red) and the Pumilio site (green) are missing from the PCR product. (c) Immunoblots showing levels of PUM1&2 and control tubulin from crosslinked BJ cells from Fig. 5d.
Figure S10 Full scans